Class: B Sc II (Sem III)

Subject: STATISTICAL PHYSICS AND THERMODYNAMICS-I

Tentative lesson plan from August 2022 to November 2022

Two weeks left for MST tentative and one week for revision/queries for MST.

TIME PERIOD	TOPICS TO BE COVERED
Week 1	Basic ideas of statistical physics, Scope of statistical physics, Basic ideas about probability,
Week 2	Distribution of four distinguishable particles in two compartment of equal size.
Week 3	Concept of macro states, microstates, thermodynamic probability.
Week 4	Effects of constraints on the system, Distribution of n particles in two compartments,
Week 5	Deviation from the state of maximum probability, equilibrium state of dynamic system,
Week 6	Distribution of distinguishable n particles in k compartments of unequal sizes
Week 7	Phase space and its division into elementary cells, Three kinds of statistics.
Week 8	The basic approach in the three statistics, Maxwell Boltzman (MB) statistics applied to an ideal gas in equilibrium.
Week 9	Experimental verification of Maxwell Boltzman law of distribution of molecular speeds,
Week 10	Need for quantum statistics-Bose-Einstein (B.E.) statistics,
Week 11	Derivation of Planck's law of radiation, Deduction of Wien's displacement law from Planck's law
Week 12	Deduction of Stefan's law from Planck's law, Fermi-Dirac (F.D.) statistics
Week 13	Comparison of M.B., B.E. and F.D. statistics.

Dipender Singhan 8

HOD, Physics Department

Principal
Govt. College
Ropar

B.Sc.II (Sem III)

Subject:Optics

Tentative lesson plan from August 2022 to November 2022

Two weeks left for MST tentative and one week for revision/queries for MST.

I WO WEEKS ICH TO	I WO WEEKS ICH TOT WIST TEMATIVE and one week to the temative and one		
TIME PERIOD	TOPICS TO BE COVERED		
Week 1	Concept of coherence, Spatial and temporal coherence. Coherence time,		
Week 2	Coherence length, Area of coherence, Conditions for observing interference fringes,		
Week 3	Interference by wave front division and amplitude division,		
Week 4	Michelson's interferometer—working, Principle and nature of fringes,		
Week 5	Interference in thin films, Role of interference in anti-reflection and high reflection dielectric coatings		
Week 6	Multiple beam interference, Fabry-Perot interferometer, Nature of fringes, Newton Rings.		
Week 7	Huygens-Fresnel theory, half-period zones, Zone plates,		
Week 8	Distinction between Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at rectangular and circular apertures,.		
Week 9	Effects of diffraction in optical imaging, resolving power of telescope.		
Week 10	The diffraction grating, its use as a spectroscopic element and its resolving power		
Week 11	Concept and analytical treatment of un-polarized, plane polarized and elliptically polarized light		
Week 12	Double refraction, Nicol prism, Sheet polarizer, Retardation plates		
Week 13	Production and analysis of polarized light (quarter and half wave plates).		
	Λ		

Dipender Singh

HOD, Physics Department

Principal
Govt. College
Ropar

B.Sc.II (Sem III)

Subject: Quantum Mechanics-I

Tentative lesson plan from August 2022 to November 2022

Two weeks left for MST tentative and one week for revision/queries for MST.

I WO WEEKS IEIT IO.	Mor tentative and one week to
TIME PERIOD	TOPICS TO BE COVERED
Week 1	Brief introduction to need and development of quantum mechanics, Wave-particle,
Week 2	dualityde-Broglie hypothesis, Complimentarity and uncertainty principle
Week 3	Gaussian wave-packet Schrodinger equation for a free particle,
Week 4	operator correspondence and equation for a particle subject to forces .Normalization and probability,
Week 5	Interpretation of wave function, Super position principle, Expectation value,
Week 6	probability current and conservation of probability Admissibility conditions on the wave function
Week 7	Ehrenfest theorem, Fundamental postulates of wave mechanics,
Week 8	Eigen functions and eigen values. Operator formalism, Orthogonal systems,
Week 9	Expansion in eigen functions Hermitian operators, Simultaneous eigen functions.
Week 10	Equation of motion, Time dependent Schrödinger equation. Application to stationary states for one dimension
Week 11	Potential step, Potential barrier, Rectangular potential well, Degeneracy,
Week 12	Orthogonality, Linear harmonic oscillator, Schrodinger equation for spherically symmetric potential,
Week 13	Spherical harmonics. Hydrogen atom energy levels and eigen functions. Degeneracy, Angular momentum

Dipender Singh M8

HOD, Physics Department

Tates Sur Principal Govt. College Ropar

Class: B Sc II (Sem IV)

Subject: STATISTICAL PHYSICS AND THERMODYNAMICS-II

Tentative lesson plan from March 2023 to June 2023

Two weeks left for MST tentative and one week for revision/queries for MST.

Two weeks left for MIST tentative and one week for revision/queries for MIST		
OVERED		
n of entropy, Change of entropy of a system ntropy,		
entropy, Reversible and irreversible process and		
ersible process. Examples of increase of entorpy s,		
rder, Brief review of terms and laws of		
opy changes in Carnot cycle. Applications of thermoelectric effect.		
along a reversible path in a P.V. diagram, gas		
e of an ideal gas from simple statistical death of the universe.		
well's thermo dynamical relations, Cooling ic streching,		
on, Change of internal energy with volume,		
tant pressure and constant volume,		
cv , Change of state and Clayperon equation,		
eatment of Joule-Thomson effect, Use of Joule-		
ium, Production of very low temperature by zation		

Dipender Singh 278 HOD, Physics Department

Table Sw Principal Govt. College Ropar

B.Sc.II (Sem IV)

Subject: Lasers

Tentative lesson plan from March 2023 to June 2023

Two weeks left for MST tentative and one week for revision/queries for MST.

TIME PERIOD	TOPICS TO BE COVERED
Week 1	Derivation of Einstein's relations. Concept of stimulated emission and population inversion
Week 2	Broadening of spectral lines, natural broadening.
Week 3	collision and Doppler broadening ,Line width, Line profile,.
Week 4	Absorption and amplification of a parallel beam of light passing through a medium
Week 5	Threshold condition, Introduction of three level and four level laser schemes
Week 6	Elementary theory of optical cavity, Longitudinal and transverse modes.
Week 7	Laser Systems: types of lasers, Ruby laser- construction, mode of creating population inversion and output characteristics
Week 8	Nd: YAG laser - construction, mode of creating population inversion and output characteristics
Week 9	He-Ne laser - construction, mode of creating population inversion and output characteristics
Week 10	CO ₂ laser- construction, mode of creating population inversion and output characterstics.
Week 11	Semiconductor lasers, Dye lasers,
Week 12	Q-switching, Mode locking,
Week 13	Applications of lasers–a general outline. Basics of holography.

Dipender Singh 7/8

HOD, Physics Department

Principal

Jates Su

Govt. College

Ropar

B.Sc.II (Sem IV)

Subject: QUANTUM MECHANICS-II

Tentative lesson plan from March 2023 to June 2023

Two weeks left for MST tentative and one week for revision/queries for MST.

TIME PERIOD	TOPICS TO BE COVERED
Week 1	Excitation of atom with radiation. Transition probability, Spontaneous transition,
Week 2	Selection rules and life time, Spectrum of hydrogen atom. Frank Hertz Experiment,
Week 3	Line structure, Normal Zeeman effect, Electron spin, Stern Gerlach experiment,
Week 4	Spin orbit coupling (electron magnetic moment, total angular momentum),
Week 5	Hyperfine structure, Examples of one electron systems,
Week 6	Anomalous, Zeeman effect, Lande-g factor (sodium D-lines).
Week 7	Many Electron System Spectra: Exchange symmetry of wave functions, exclusion principle,
Week 8	Shells, Sub shells in atoms, atomic spectra (Helium),
Week 9	L.S. coupling ,Selection rules, Regularities in atomic spectra,
Week 10	Interaction energy, X-ray spectra, Mosley law
Week 11	Absorption spectra, Auger effect. Molecular bonding,.
Week 12	Molecular spectra, Selection rules, Symmetric structures, Rotational,
Week 13	Vibration electronic level and spectra of molecules, Raman spectra

Dipender Singh 778

HOD, Physics Department

Jateller Principal Govt. College Ropar